skip to main content


Search for: All records

Creators/Authors contains: "Gavery, Mackenzie R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Epigenetics has attracted considerable attention with respect to its potential value in many areas of agricultural production, particularly under conditions where the environment can be manipulated or natural variation exists. Here we introduce key concepts and definitions of epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNA, review the current understanding of epigenetics in both fish and shellfish, and propose key areas of aquaculture where epigenetics could be applied. The first key area is environmental manipulation, where the intention is to induce an ‘epigenetic memory’ either within or between generations to produce a desired phenotype. The second key area is epigenetic selection, which, alone or combined with genetic selection, may increase the reliability of producing animals with desired phenotypes. Based on aspects of life history and husbandry practices in aquaculture species, the application of epigenetic knowledge could significantly affect the productivity and sustainability of aquaculture practices. Conversely, clarifying the role of epigenetic mechanisms in aquaculture species may upend traditional assumptions about selection practices. Ultimately, there are still many unanswered questions regarding how epigenetic mechanisms might be leveraged in aquaculture.

     
    more » « less
  2. Abstract

    There is a growing focus on the role of DNA methylation in the ability of marine invertebrates to rapidly respond to changing environmental factors and anthropogenic impacts. However, genome‐wide DNA methylation studies in nonmodel organisms are currently hampered by a limited understanding of methodological biases. Here, we compare three methods for quantifying DNA methylation at single base‐pair resolution—whole genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS), and methyl‐CpG binding domain bisulfite sequencing (MBDBS)—using multiple individuals from two reef‐building coral species with contrasting environmental sensitivity. All methods reveal substantially greater methylation inMontipora capitata(11.4%) than the more sensitivePocillopora acuta(2.9%). The majority of CpG methylation in both species occurs in gene bodies and flanking regions. In both species, MBDBS has the greatest capacity for detecting CpGs in coding regions at our sequencing depth, but MBDBS may be influenced by intrasample methylation heterogeneity. RRBS yields robust information for specific loci albeit without enrichment of any particular genome feature and with significantly reduced genome coverage. Relative genome size strongly influences the number and location of CpGs detected by each method when sequencing depth is limited, illuminating nuances in cross‐species comparisons. As genome‐wide methylation differences, supported by data across bisulfite sequencing methods, may contribute to environmental sensitivity phenotypes in critical marine invertebrate taxa, these data provide a genomic resource for investigating the functional role of DNA methylation in environmental tolerance.

     
    more » « less